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OVERVIEW

2

Project Start: October 2017

Project End: September 2020

15% complete

 Complexity of urban scale 
networks are too large to model 
in reasonable compute time

 Ingestion and understanding of 
real-world data in near real-time

 Optimization of energy 
productivity and mobility across 
complex networks

Total project funding:

$6M / 3 years

$2M per year / 4 National Labs

Timeline

Budget

Barriers

PNNL, ANL, ORNL

Connected Corridor, UCB, 
CalTrans

Partners



RELEVANCE
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 Overall Objective: Support the EEMS program mission to create new knowledge, 

tools, insights, and technology solutions that increase mobility energy productivity 

for individuals and businesses by:

– Developing the High Performance Computing tools to rapidly model large 

scale transportation networks using real-world, near real-time data.  

– Integrating energy, productivity and mobility measures to determine 

optimization opportunities.

 Objectives this period:

• Identify appropriate modeling tools (e.g. deep learning) and platforms.

• Demonstrate HPC transportation model for capturing urban scale traffic 

dynamics.

• Estimate the energy cost and productivity loss of congestion.

• Analyze real-world sensor data to estimate network demand.

 Impact:

• Develop new control ideas for optimizing energy, productivity and mobility for 

normal traffic conditions and network stress conditions



WORK BREAKDOWN
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MILESTONES
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WBS Task Primary RI Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
0 Project Coordination Berkeley

1 Define appropriate Role of HPC, ML, and big data analytics for transportation Berkeley

M1.3.1 Complete deployment of initial HPC and HPC-ML toolset as appropriate PNNL X

2 Automated Transportation Data: Veracity, Velocity, and Geospatial-Temporal

M2.1.2 Establish organizationally efficient data access process Berkeley X
M2.2.2 Select initial HPC-ML tools PNNL X

M2.3.1 Select initial training dataset from Connected Corridor ANL X

M2.3.2 Demonstrate viability of LSTM neural architecture for G-T data ANL Go/NG

M2.5.2 Define path for integration of energy models into HPC framework ORNL X

M2.5.3 Evaluate efficacy of ML approach and impact of data veracity on energy estimates ORNL Go/NG
3 Develop asynchronous distributed state HPC transportation network models Berkeley

M3.2.2 Demonstrate asynchronous distributed state model on large scale network Berkeley Go/NG

M3.3.2 Develop data transfer approach to integrate optimization models X

M3.3.3 Demonstrate HPC dynamic traffic assignment (DTA) modeling X

4 Couple automated data ingestion, learning systems and large scale modeling
M4.1.1 Preliminary dataflow diagram X

4.2.1 MaTEx deployed at all labs All X Complete

Satisfied

On Track

On Track

On Track

On Track

Complete

Complete

On Track

FY18 FY19 Status

Complete

Complete
On Track



APPROACH : Mobility Modeling & Optimization
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Develop high-speed HPC enabled 

tools that will create actionable 

control predictions at the network 

level



APPROACH : Tool Layer
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ACCOMPLISHMENTS: 

Promising Spatial & Temporal Techniques 
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A multi-layered approach incorporating both temporal and spatial learning 

Figure adapted from: Graph Convolutional 

Networks, https://tkipf.github.io/graph-

convolutional-networks

X(t)X(t-1)X(t-y)X(t-x) …

GCNGCNGCNGCN …

Graph Convolutional Network
Geospatial, structured data

LSTMLSTMLSTMLSTM … LSTMLSTM

H(t1) H(t3)H(t2)

Y(t+a) Y(t+c)Y(t+b)
Temporal Layer

Spatial Layer

Predictions



ACCOMPLISHMENTS:

Hyper-parameter Search for LSTM
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LSTM Traffic POC on Theta at Argonne’s ALCF

• LSTM hyper-parameter tuning POC running at increased scale

• 256 nodes; each node evaluates a deep neural network

Example Surrogate Model Fitted to Sampled 

Performance

(iterative refinement improves the learning model)



ACCOMPLISHMENTS: Single Station LSTM Based 

Speed & Flow Estimation POC
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Next Step : Scaling in time and space



ACCOMPLISHMENTS: 

Actor-Based Traffic Model Representation
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• Actor-based model:  links are actors, vehicles are propagated through the system 

via events passed between actors

• Event signals the arrival of a vehicle at a link at some time T0

• Link actor mediates the congestion experienced by each vehicle traversing the link

• Link computes vehicle traversal time and schedules an event for the vehicle’s 

arrival at the next link actor in the vehicle’s path at time T1

Receive Event: T0Send Event: T1 = T0 + Sa(va)

freehandz / 123RF Stock Photo

Link Actor



ACCOMPLISHMENTS:

Optimistic Parallel Discrete Event Simulation

• Simulation is parallelized by splitting links across multiple computer 

nodes/processes/threads to logical processors (LPs)

• Vehicles traverse between LPs and must be communicated across the network
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Intelligent Geospatial Partitioning of 

the Network Graph

Conservative PDES:

Requires every rank 

to be synchronized to 

a global time step

Optimistic PDES:  

Allows ranks to execute 

without synchronization and 

enforces causality by rolling 

back mis-speculatively 

executed events

Reduce communications 

and rollback by multi-

objective partitioning of link 

actors based on event load



ACCOMPLISHMENTS: Urban Scale Flow Modeling



APPROACH: Four Part Vehicle Energy Model

2012 Ford Focus

2012 Nissan Altima

2012 Ford F-150

𝑐 = 𝑓(𝐹𝑡 𝑣 , 𝑣)

Dynamometer 

Test Data 

(ANL)

Data fitting 

and tuning

2D Lookup 

Table

Timestamp 

[sec]

Dyno Speed 

[mph]

Dyno Tractive 

Effort [N]

Fuel flow 

[cc/s]

38.1 10.486429 112.832683 0.37709

38.2 10.488464 132.010357 0.392381

38.3 10.487446 135.984109 0.420566

… … … …

Objective: Estimate/predict fuel (energy) consumption for 

each vehicle on each path segment.

• Determine resistant force 𝐹𝑟 𝑣 ,

• Determine the vehicle traction force, 𝐹𝑡 𝑣

• Determine fuel rate characteristic map, 

𝑐 𝑣 = 𝑓(𝐹𝑡 𝑣 , 𝑣), using ANL datasets

• Compute fuel consumption rate for each vehicle 

based on the velocity in Mobiliti



ACCOMPLISHMENT: Four Part Vehicle Energy Model

Compute fuel consumption rate 

for each agent:

For the trip 𝑛, the total fuel 

consumption 𝑒𝑛 =

 𝑖∈𝑃𝑎𝑡ℎ 𝑓 𝐹𝑡 𝑣𝑛
𝑖 , 𝑣𝑛

𝑖 ⋅
𝑑𝑖

𝑣𝑛
𝑖

For the road link 𝑖, the 

accumulated fuel consumption 

𝐸𝑖 =  𝑛∈𝑁𝑖 𝑓 𝐹𝑡 𝑣𝑛
𝑖 , 𝑣𝑛

𝑖 ⋅
𝑑𝑖

𝑣𝑛
𝑖

where 𝑑𝑖 is the length of road link 

𝑖, 𝑣𝑛
𝑖 is the velocity of trip 𝑛

through link 𝑖, 𝑁𝑖 denotes all the 

trips through link 𝑖.

Vehicle 

Model % of Fleet

Replication 

Factor
2012 Focus 10%

82012 Altima 10%

2012 F-150 5%



ACCOMPLISHMENTS: Urban Scale Productivity Impact

• Time-varying loss of productivity across top links

• Up to $2000 loss per 15 mins on the top congested links

• Total daily loss is more than $6 million



ACCOMPLISHMENTS: Deployed HPC Enabled Machine 

Learning Platform (MaTEx)
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• MaTEx is a collection of parallel machine learning and data mining (MLDM) 

algorithms for desktops, supercomputers and cloud computing systems.

• MaTEx also supports
• K-means

• Spectral Clustering algorithms for clustering

• Support Vector Machines

• KNN algorithms for classification

• FP-Growth for Association Rule Mining.

• MaTEx provides high performance 

implementations of DL algorithms

• Google TensorFlow as the baseline

• MPI for inter-node communication

• multi-threading/CUDA (cuDNN) for intra-node 

execution



COLLABORATION AND COORDINATION
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Connected Corridor, University of California Berkeley

CalTrans, LA Metro, LA DOT

GPS Data for Connected Corridor Region

National Laboratories : HPC Modeling

Government and Academia : Infrastructure Data

Industry : Mobility Data

TAZ Movement Data / Validation



REMAINING CHALLENGES AND BARRIERS

 Acquisition of urban scale mobility data

 Development of learning models for sparse and low 

quality data sets

 Data fusion mechanisms for creating improved demand 

models from real-world data

 Extension of small scale models to full urban scale 

models 

 Development of learning models for large scale networks
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FUTURE RESEARCH

 Characterizing real-world mobility demand using automated, data-fusion  ML 

models 

 Use of simulator to create emergent behaviors: 

 Extend models and simulator to investigate impact of more intelligent 

transportation system agents – dynamic routing.

 Investigate impact of induced agent rerouting as a result of a network 

change

 Impact of routing and control algorithms on energy, productivity and mobility 

measures with more sophisticated network representation, eg. improved 

map information

 Improved performance of the simulator to generate data sets for machine 

learning algorithms for the purpose of creating  large scale network 

characterizations 

 Investigate the use of resultant models in real-time decision making

20

Any proposed future work is subject to change based on funding levels



SUMMARY

 Urban-scale model for investigating 

impact of mobility dynamics running on 

HPC

 Capable of running large network 

and demand (2M links, 7M agents) 

in minutes

 Energy model under development

 Economic cost model in place

 Machine Learning approach to 

estimating speed and flow from real-

world data  - allows for understanding 

and modeling true dynamics

 HPC enabled tool chain in place to 

create integrated problem solutions

21
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APPROACH: Functional Layer with Analytics
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